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Abstract. An ‘addition’ formula with respect to a variable and parameter is established for the
basic exponential function on a q-quadratic grid.

A basic exponential function on a q-quadratic grid can be introduced as

Eq(x, y;α) = (α2; q2)∞
(qα2; q2)∞

∞∑
n=0

qn2/4αn

(q; q)n e−inϕ(−q(1−n)/2eiθ+iϕ,−q(1−n)/2eiϕ−iθ ; q)n (1)

where x = cos θ and y = cosϕ and |α| < 1 (see [1–5,10–12,14] and see [15] for more details
including representation in terms of basic hypergeometric series and analytic continuation in
a larger domain).

We use the standard notations for the basic hypergeometric series

rϕs

(
a1, a2, . . . , ar

b1, b2, . . . , bs
; q, t

)
=

∞∑
n=0

(a1, a2, . . . , ar; q)n
(q, b1, b2, . . . , bs; q)n ((−1)nqn(n−1)/2)1+s−r tn (2)

and for the q-shifted factorials

(a; q)n :=
n−1∏
k=0

(1 − aqk) (a1, a2, . . . , ar; q)n :=
r∏

k=1

(ak; q)n (3)

(a; q)∞ := lim
n→∞(a; q)n (a1, a2, . . . , ar; q)∞ :=

r∏
k=1

(ak; q)∞ (4)

provided |q| < 1. See [6] for an excellent account of the theory of basic hypergeometric series.
Function Eq(x, y;α) is an analogue of exp[α(x + y)],

lim
q→1−

Eq(x, y; (1 − q)α/2) = exp[α(x + y)]. (5)

We also introduce

Eq(x;α) = Eq(x, 0;α) (6)

as the q-analogue of exp(αx). The following properties hold:

Eq(0, 0;α) = Eq(0;α) = 1 Eq(x, y;α) = Eq(y, x;α). (7)

A commutative q-analogue of the addition theorem exp[α(x + y)] = exp(αx) exp(αy)
has been established by the author in [14].
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Theorem 1.

Eq(x, y;α) = Eq(x;α)Eq(y;α). (8)

This formula has attracted some attention and different proofs of this relation were given
in [4, 11], and [14].

Although Eq(x;α) is an analogue of exp(αx), the function Eq(x;α) is not symmetric in
x and α, so one would expect Eq(x;α) to have two different addition theorems. Equation (8)
gives the addition theorem in the variable x. Ismail and Stanton [11] have recently found the
following expansion formula:

(qα2, qβ2; q2)∞ Eq(x;α) Eq(x;β)

=
∞∑
n=0

qn2/4αn Hn(x|q)(−αβq(n+1)/2; q)∞ (−q(1−n)/2β/α; q)n
(q; q)n (9)

where Hn(x|q) are the continuous q-Hermite polynomials,

Hn(cos θ |q) =
n∑

k=0

(q; q)n
(q; q)k(q; q)n−k

ei(n−2k)θ (10)

(see, e.g., [6] and [13]). Expansion (9) and its extensions found in [11] are important
contributions in the growing area of q-series (see, e.g., [15] for applications of these expansions
to the theory of basic Fourier series [1]). Ismail and Stanton [11] have called (9) the addition
theorem in the variable α because it becomes exp(αx) exp(βx) = exp[(α + β)x] in the limit
q → 1−.

In this Letter the author would like to present another version of the ‘addition’ formula
with respect to both variables x and α, which extends theorem 1.

Theorem 2.

Eq(cos θ;α)Eq(cosϕ;β) = (β2; q2)∞
(qα2; q2)∞

∞∑
n=0

qn2/4βn

(q; q)n
×e−inϕ(−q(1−n)/2eiθ+iϕα/β,−q(1−n)/2eiϕ−iθα/β; q)n
×2ϕ2

(
q−n, α2/β2

−q(1−n)/2eiθ+iϕα/β,−q(1−n)/2eiϕ−iθα/β
; q, qe2iϕ

)
. (11)

This formula can be thought of as a general analogue of exp(αx) exp(βy) = exp(αx+βy).
Clearly, our theorem 2 gives the addition formula (8) when β = α. It is natural to denote the
right-hand side of (11) as Eq(x, y;α, β), then

Eq(x;α)Eq(y;β) = Eq(x, y;α, β). (12)

The case of the addition theorem in the variable α, raised by Ismail and Stanton [11], arises
when y = x. Theorem 1 simplifies the product of two single series to a similar single series,
while theorem 2 allows us to factor the double series into a product of two single series.

Proof. Our proof of (11) is based on the connection relation (10.2) of [1], which we rewrite
here as

(qα2; q2)∞
(qβ2; q2)∞

Eq(cos θ;α) = 1

2π

∫ π

0

(q, α2/β2, e2iψ, e−2iψ ; q)∞ Eq(cosψ;β) dψ

(eiθ+iψα/β, eiθ−iψα/β, e−iθ+iψα/β, e−iθ−iψα/β; q)∞
(13)



Letter to the Editor L377

provided α < β. Multiplying both sides of (13) by Eq(cosϕ;β) and then using the addition
formula (8), the symmetry relation (7) and the definition (1) one obtains

(qα2; q2)∞
(qβ2; q2)∞

Eq(cos θ;α) Eq(cosϕ;β)

= 1

2π

∫ π

0

(q, α2/β2, e2iψ, e−2iψ ; q)∞ Eq(cosϕ, cosψ;β)
(eiθ+iψα/β, eiθ−iψα/β, e−iθ+iψα/β, e−iθ−iψα/β; q)∞ dψ

= (β2; q2)∞
(qβ2; q2)∞

(q, α2/β2; q)∞
∞∑
n=0

qn2/4

(q; q)n (βe−iϕ)n

× 1

2π

∫ π

0

(e2iψ, e−2iψ,−q(1−n)/2eiϕ+iψ,−q(1−n)/2eiϕ−iψ ; q)∞
(−q(1+n)/2eiϕ+iψ,−q(1+n)/2eiϕ−iψ ; q)∞

× dψ

(eiθ+iψα/β, eiθ−iψα/β, e−iθ+iψα/β, e−iθ−iψα/β; q)∞ . (14)

The last integral can be evaluated by the special case a = b = 0 of the Nassrallah and Rahman
integral,

1

2π

∫ π

0

(e2iψ, e−2iψ, geiψ, ge−iψ ; q)∞ dψ

(ceiψ, ce−iψ, deiψ, de−iψ, f eiψ, f e−iψ ; q)∞
= (cg; q)∞

(q, cd, cf ; q)∞ 2ϕ1

(
g/d, g/f

cg
; q, df

)
(15)

(see (6.3.2) and (6.3.8) of [6]). Therefore,

Eq(cos θ;α) Eq(cosϕ;β)

= (β2; q2)∞
(qα2; q2)∞

∞∑
n=0

qn2/4

(q; q)n βne−inϕ(−q(1−n)/2eiθ+iϕα/β; q)n

×2ϕ1

( −q(1−n)/2eiθ+iϕβ/α, q−n

−q(1−n)/2eiθ+iϕα/β
; q,−q(1+n)/2eiϕ−iθα/β

)
. (16)

Use of the transformation (III.3) of [6] completes the proof. �

Changing the order of summation on the right-hand side of (11) one obtains an alternative
form

Eq(x, y;α, β) = (β2; q2)∞
(qα2; q2)∞

∞∑
k=0

(α2/β2; q)k
(q; q)k qk2/4(βeiϕ)k

×
∞∑
n=0

qn(n−2k)/4βn

(q; q)k e−inϕ(−q(1−n+k)/2eiθ+iϕα/β,−q(1−n+k)/2eiϕ−iθα/β; q)n.

(17)

When β = α the first sum terminates and we obtain (1) once again. The second sum can be
reduced to the sum of two 4ϕ3-series; this expression is too lengthy to present here.

Function Eq(x, y;α, β) on the right-hand side of (11) is an analogue of exp(αx + βy).
Indeed, from (16)

lim
q→1−

Eq(x, y; (1 − q)α/2, (1 − q)β/2)

=
∞∑
n=0

(β/2)n

n!
e−inϕ(1 + eiθ+iϕα/β)n
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×
n∑

k=0

(−n)k

k!

(1 + eiθ+iϕβ/α)k(−eiϕ−iθα/β)k

(1 + eiθ+iϕα/β)k

=
∞∑
n=0

(1/2)n

n!
(αeiθ + βe−iϕ)n

(
1 +

αe−iθ + βeiϕ

αeiθ + βe−iϕ

)n

=
∞∑
n=0

(αx + βy)n

n!
= exp(αx + βy) (18)

by the binomial theorem.
Function u = Eq(x, y;α, β) in (11), (12) and (17) is a double-series solution of the

difference equation

δ

δx
Eq(x, y;α, β) = 2q1/4α

1 − q
Eq(x, y;α, β) (19)

which is an analogue of

d

dx
exp(αx + βy) = α exp(αx + βy) (20)

on a q-quadratic grid. Operator δ/δx is the standard Askey–Wilson divided difference operator

δu(z)

δx(z)
= u(z + 1/2) − u(z − 1/2)

x(z + 1/2) − x(z − 1/2)
(21)

with x = (qz + q−z)/2 = cos θ , qz = eiθ . Applying this operator to (19) once again one
obtains

δ2u

δx2
=

(
2q1/4α

1 − q

)2

u. (22)

The method of solution of this equation discussed in [14] (see also references therein) does
not involve the double-series solution found here.

Function Eq(x, y;α, β) satisfies the following simple properties:

Eq(x, y;α, α) = Eq(x, y;α) Eq(x, y;α, β) = Eq(y, x;β, α) (23)

Eq(x, 0;α, β) = Eq(x;α) Eq(0, y;α, β) = Eq(y;β). (24)

Equation (12) leads also to the product formula

Eq(x, y;α, β) Eq(z, w; γ, δ) = Eq(x, z;α, γ ) Eq(y,w;β, δ) (25)

which is, obviously, a q-analogue of

exp(αx + βy) exp(γ z + δw) = exp(αx + γ z) exp(βy + δw).

Equation (25) is an extension of the product formula (7.7) of [14] in the case of the q-quadratic
lattice under consideration.

Two limiting cases of (16) are of interest. When β → 0, we obtain the generating function
for the continuous q-Hermite polynomials

(qα2; q2)∞Eq(x;α) =
∞∑
n=0

qn2/4

(q; q)n α
n Hn(x|q) (26)

discussed in [2, 4, 9, 11, 12] and [14]. One needs this generating function in order to derive
the connecting formula (13) (see [1]). Another limiting case, α → 0, results in the following
generating relation found in [11]:

Eq(x;β) = (β2; q2)∞
∞∑
n=0

qn2/4

(q; q)n β
nHn(x|q−1) (27)



Letter to the Editor L379

where

Hn(cos θ |q−1) =
n∑

k=0

qk2−kn (q; q)n
(q; q)k(q; q)n−k

ei(n−2k)θ . (28)

One can also introduce basic trigonometric functions

Cq(x, y;ω, #) = 1
2 (Eq(x, y; iω, i#) + Eq(x, y; −iω,−i#)) (29)

Sq(x, y;ω, #) = 1

2i
(Eq(x, y; iω, i#) − Eq(x, y; −iω,−i#)) (30)

as analogues of cos(ωx +#y) and sin(ωx +#y), respectively. The following addition formulae
hold.

Theorem 3.

Cq(x, y;ω, #) = Cq(x;ω)Cq(y; #) − Sq(x;ω)Sq(y; #) (31)

Sq(x, y;ω, #) = Sq(x;ω)Cq(y; #) + Cq(x;ω)Sq(y; #). (32)

These formulae are, obviously, q-analogues of

cos(ωx + #y) = cosωx cos #y − sinωx sin #y (33)

sin(ωx + #y) = sinωx cos #y + cosωx sin #y. (34)

The special case # = ω of formulae (31) and (32) was discussed in [14].
Addition formula (11) deserves further investigation. For example, it is worth

understanding the similarity of the function Eq(x, y;α, β) introduced here to the generating
functions for the continuous q-ultraspherical polynomials and the continuous q-Jacobi
polynomials found in [8]. A group-theoretical interpretation of the q-addition theorems is
another interesting question under consideration.

The author thanks Joaquin Bustoz for valuable discussion. He was supported by NSF grant
DMS 9803443.
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