Another addition theorem for the q-exponential function

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 33 L375
(http://iopscience.iop.org/0305-4470/33/41/103)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:33

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Another addition theorem for the q-exponential function

Sergei Suslov
Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804, USA
E-mail: sks@asu.edu

Received 4 August 2000

Abstract. An 'addition' formula with respect to a variable and parameter is established for the basic exponential function on a q-quadratic grid.

A basic exponential function on a q-quadratic grid can be introduced as
$\mathcal{E}_{q}(x, y ; \alpha)=\frac{\left(\alpha^{2} ; q^{2}\right)_{\infty}}{\left(q \alpha^{2} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} \frac{q^{n^{2} / 4} \alpha^{n}}{(q ; q)_{n}} \mathrm{e}^{-\mathrm{i} n \varphi}\left(-q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \varphi},-q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \varphi-\mathrm{i} \theta} ; q\right)_{n}$
where $x=\cos \theta$ and $y=\cos \varphi$ and $|\alpha|<1$ (see [1-5,10-12,14] and see [15] for more details including representation in terms of basic hypergeometric series and analytic continuation in a larger domain).

We use the standard notations for the basic hypergeometric series
${ }_{r} \varphi_{s}\left(\begin{array}{l}a_{1}, a_{2}, \ldots, a_{r} \\ b_{1}, b_{2}, \ldots, b_{s}\end{array} ; q, t\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{n}}{\left(q, b_{1}, b_{2}, \ldots, b_{s} ; q\right)_{n}}\left((-1)^{n} q^{n(n-1) / 2}\right)^{1+s-r} t^{n}$
and for the q-shifted factorials

$$
\begin{array}{ll}
(a ; q)_{n}:=\prod_{k=0}^{n-1}\left(1-a q^{k}\right) & \left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{n}:=\prod_{k=1}^{r}\left(a_{k} ; q\right)_{n} \\
(a ; q)_{\infty}:=\lim _{n \rightarrow \infty}(a ; q)_{n} & \left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{\infty}:=\prod_{k=1}^{r}\left(a_{k} ; q\right)_{\infty} \tag{4}
\end{array}
$$

provided $|q|<1$. See [6] for an excellent account of the theory of basic hypergeometric series.
Function $\mathcal{E}_{q}(x, y ; \alpha)$ is an analogue of $\exp [\alpha(x+y)]$,

$$
\begin{equation*}
\lim _{q \rightarrow 1^{-}} \mathcal{E}_{q}(x, y ;(1-q) \alpha / 2)=\exp [\alpha(x+y)] \tag{5}
\end{equation*}
$$

We also introduce

$$
\begin{equation*}
\mathcal{E}_{q}(x ; \alpha)=\mathcal{E}_{q}(x, 0 ; \alpha) \tag{6}
\end{equation*}
$$

as the q-analogue of $\exp (\alpha x)$. The following properties hold:

$$
\begin{equation*}
\mathcal{E}_{q}(0,0 ; \alpha)=\mathcal{E}_{q}(0 ; \alpha)=1 \quad \mathcal{E}_{q}(x, y ; \alpha)=\mathcal{E}_{q}(y, x ; \alpha) \tag{7}
\end{equation*}
$$

A commutative q-analogue of the addition theorem $\exp [\alpha(x+y)]=\exp (\alpha x) \exp (\alpha y)$ has been established by the author in [14].

Theorem 1.

$$
\begin{equation*}
\mathcal{E}_{q}(x, y ; \alpha)=\mathcal{E}_{q}(x ; \alpha) \mathcal{E}_{q}(y ; \alpha) . \tag{8}
\end{equation*}
$$

This formula has attracted some attention and different proofs of this relation were given in [4, 11], and [14].

Although $\mathcal{E}_{q}(x ; \alpha)$ is an analogue of $\exp (\alpha x)$, the function $\mathcal{E}_{q}(x ; \alpha)$ is not symmetric in x and α, so one would expect $\mathcal{E}_{q}(x ; \alpha)$ to have two different addition theorems. Equation (8) gives the addition theorem in the variable x. Ismail and Stanton [11] have recently found the following expansion formula:

$$
\begin{align*}
& \left(q \alpha^{2}, q \beta^{2} ; q^{2}\right)_{\infty} \mathcal{E}_{q}(x ; \alpha) \mathcal{E}_{q}(x ; \beta) \\
& \quad=\sum_{n=0}^{\infty} q^{n^{2} / 4} \alpha^{n} H_{n}(x \mid q)\left(-\alpha \beta q^{(n+1) / 2} ; q\right)_{\infty} \frac{\left(-q^{(1-n) / 2} \beta / \alpha ; q\right)_{n}}{(q ; q)_{n}} \tag{9}
\end{align*}
$$

where $H_{n}(x \mid q)$ are the continuous q-Hermite polynomials,

$$
\begin{equation*}
H_{n}(\cos \theta \mid q)=\sum_{k=0}^{n} \frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} \mathrm{e}^{\mathrm{i}(n-2 k) \theta} \tag{10}
\end{equation*}
$$

(see, e.g., [6] and [13]). Expansion (9) and its extensions found in [11] are important contributions in the growing area of q-series (see, e.g., [15] for applications of these expansions to the theory of basic Fourier series [1]). Ismail and Stanton [11] have called (9) the addition theorem in the variable α because it becomes $\exp (\alpha x) \exp (\beta x)=\exp [(\alpha+\beta) x]$ in the limit $q \rightarrow 1^{-}$.

In this Letter the author would like to present another version of the 'addition' formula with respect to both variables x and α, which extends theorem 1 .

Theorem 2.

$$
\begin{align*}
\mathcal{E}_{q}(\cos \theta ; \alpha) \mathcal{E}_{q} & (\cos \varphi ; \beta)=\frac{\left(\beta^{2} ; q^{2}\right)_{\infty}}{\left(q \alpha^{2} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} \frac{q^{n^{2} / 4} \beta^{n}}{(q ; q)_{n}} \\
& \times \mathrm{e}^{-\mathrm{i} n \varphi}\left(-q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \varphi} \alpha / \beta,-q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \varphi-\mathrm{i} \theta} \alpha / \beta ; q\right)_{n} \\
& \times{ }_{2} \varphi_{2}\left(\begin{array}{c}
q^{-n}, \alpha^{2} / \beta^{2} \\
-q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \varphi} \alpha / \beta,-q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \varphi-\mathrm{i} \theta} \alpha / \beta
\end{array} ; q, q \mathrm{e}^{2 \mathrm{i} \varphi}\right) . \tag{11}
\end{align*}
$$

This formula can be thought of as a general analogue of $\exp (\alpha x) \exp (\beta y)=\exp (\alpha x+\beta y)$. Clearly, our theorem 2 gives the addition formula (8) when $\beta=\alpha$. It is natural to denote the right-hand side of (11) as $\mathcal{E}_{q}(x, y ; \alpha, \beta)$, then

$$
\begin{equation*}
\mathcal{E}_{q}(x ; \alpha) \mathcal{E}_{q}(y ; \beta)=\mathcal{E}_{q}(x, y ; \alpha, \beta) . \tag{12}
\end{equation*}
$$

The case of the addition theorem in the variable α, raised by Ismail and Stanton [11], arises when $y=x$. Theorem 1 simplifies the product of two single series to a similar single series, while theorem 2 allows us to factor the double series into a product of two single series.

Proof. Our proof of (11) is based on the connection relation (10.2) of [1], which we rewrite here as
$\frac{\left(q \alpha^{2} ; q^{2}\right)_{\infty}}{\left(q \beta^{2} ; q^{2}\right)_{\infty}} \mathcal{E}_{q}(\cos \theta ; \alpha)=\frac{1}{2 \pi} \int_{0}^{\pi} \frac{\left(q, \alpha^{2} / \beta^{2}, \mathrm{e}^{2 \mathrm{i} \psi}, \mathrm{e}^{-2 \mathrm{i} \psi} ; q\right)_{\infty} \mathcal{E}_{q}(\cos \psi ; \beta) \mathrm{d} \psi}{\left(\mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \psi} \alpha / \beta, \mathrm{e}^{\mathrm{i} \theta-\mathrm{i} \psi} \alpha / \beta, \mathrm{e}^{-\mathrm{i} \theta+\mathrm{i} \psi} \alpha / \beta, \mathrm{e}^{-\mathrm{i} \theta-\mathrm{i} \psi} \alpha / \beta ; q\right)_{\infty}}$
provided $\alpha<\beta$. Multiplying both sides of (13) by $\mathcal{E}_{q}(\cos \varphi ; \beta)$ and then using the addition formula (8), the symmetry relation (7) and the definition (1) one obtains

$$
\begin{align*}
\frac{\left(q \alpha^{2} ; q^{2}\right)_{\infty}}{\left(q \beta^{2} ; q^{2}\right)_{\infty}} & \mathcal{E}_{q}(\cos \theta ; \alpha) \mathcal{E}_{q}(\cos \varphi ; \beta) \\
= & \frac{1}{2 \pi} \int_{0}^{\pi} \frac{\left(q, \alpha^{2} / \beta^{2}, \mathrm{e}^{2 \mathrm{i} \psi}, \mathrm{e}^{-2 \mathrm{i} \psi} ; q\right)_{\infty} \mathcal{E}_{q}(\cos \varphi, \cos \psi ; \beta)}{\left(\mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \psi} \alpha / \beta, \mathrm{e}^{\mathrm{i} \theta-\mathrm{i} \psi} \alpha / \beta, \mathrm{e}^{-\mathrm{i} \theta+\mathrm{i} \psi} \alpha / \beta, \mathrm{e}^{-\mathrm{i} \theta-\mathrm{i} \psi} \alpha / \beta ; q\right)_{\infty}} \mathrm{d} \psi \\
= & \frac{\left(\beta^{2} ; q^{2}\right)_{\infty}}{\left(q \beta^{2} ; q^{2}\right)_{\infty}}\left(q, \alpha^{2} / \beta^{2} ; q\right)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}}\left(\beta \mathrm{e}^{-\mathrm{i} \varphi}\right)^{n} \\
& \times \frac{1}{2 \pi} \int_{0}^{\pi} \frac{\left(\mathrm{e}^{2 \mathrm{i} \psi}, \mathrm{e}^{-2 \mathrm{i} \psi},-q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \varphi+\mathrm{i} \psi},-q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \varphi-\mathrm{i} \psi} ; q\right)_{\infty}}{\left(-q^{(1+n) / 2} \mathrm{e}^{\mathrm{i} \varphi+\mathrm{i} \psi},-q^{(1+n) / 2} \mathrm{e}^{\mathrm{i} \varphi-\mathrm{i} \psi} ; q\right)_{\infty}} \\
& \times \frac{\mathrm{d} \psi}{\left(\mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \psi} \alpha / \beta, \mathrm{e}^{\mathrm{i} \theta-\mathrm{i} \psi} \alpha / \beta, \mathrm{e}^{-\mathrm{i} \theta+\mathrm{i} \psi} \alpha / \beta, \mathrm{e}^{-\mathrm{i} \theta-\mathrm{i} \psi} \alpha / \beta ; q\right)_{\infty}} \tag{14}
\end{align*}
$$

The last integral can be evaluated by the special case $a=b=0$ of the Nassrallah and Rahman integral,

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{\pi} \frac{\left(\mathrm{e}^{2 \mathrm{i} \psi}, \mathrm{e}^{-2 \mathrm{i} \psi}, g \mathrm{e}^{\mathrm{i} \psi}, g \mathrm{e}^{-\mathrm{i} \psi} ; q\right)_{\infty} \mathrm{d} \psi}{\left(c \mathrm{e}^{\mathrm{i} \psi \psi}, c \mathrm{e}^{-\mathrm{i} \psi}, d \mathrm{e}^{\mathrm{i} \psi}, d \mathrm{e}^{-\mathrm{i} \psi}, f \mathrm{e}^{\mathrm{i} \psi}, f \mathrm{e}^{-\mathrm{i} \psi} ; q\right)_{\infty}} \\
& \quad=\frac{(c g ; q)_{\infty}}{(q, c d, c f ; q)_{\infty}}{ }^{2} \varphi_{1}\left(\begin{array}{c}
g / d, g / f \\
c g
\end{array} ; q, d f\right) \tag{15}
\end{align*}
$$

(see (6.3.2) and (6.3.8) of [6]). Therefore,

$$
\begin{align*}
\mathcal{E}_{q}(\cos \theta ; \alpha) & \mathcal{E}_{q}(\cos \varphi ; \beta) \\
= & \frac{\left(\beta^{2} ; q^{2}\right)_{\infty}}{\left(q \alpha^{2} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} \beta^{n} \mathrm{e}^{-\mathrm{i} n \varphi}\left(-q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \varphi} \alpha / \beta ; q\right)_{n} \\
& \times{ }_{2} \varphi_{1}\left(\begin{array}{c}
-q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \varphi} \beta / \alpha, q^{-n} \\
-q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \varphi} \alpha / \beta
\end{array} \quad ; q,-q^{(1+n) / 2} \mathrm{e}^{\mathrm{i} \varphi-\mathrm{i} \theta} \alpha / \beta\right) . \tag{16}
\end{align*}
$$

Use of the transformation (III.3) of [6] completes the proof.
Changing the order of summation on the right-hand side of (11) one obtains an alternative form

$$
\begin{align*}
\mathcal{E}_{q}(x, y ; \alpha, \beta) & =\frac{\left(\beta^{2} ; q^{2}\right)_{\infty}}{\left(q \alpha^{2} ; q^{2}\right)_{\infty}} \sum_{k=0}^{\infty} \frac{\left(\alpha^{2} / \beta^{2} ; q\right)_{k}}{(q ; q)_{k}} q^{k^{2} / 4}\left(\beta \mathrm{e}^{\mathrm{i} \varphi}\right)^{k} \\
& \times \sum_{n=0}^{\infty} \frac{q^{n(n-2 k) / 4} \beta^{n}}{(q ; q)_{k}} \mathrm{e}^{-\mathrm{i} n \varphi}\left(-q^{(1-n+k) / 2} \mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \varphi} \alpha / \beta,-q^{(1-n+k) / 2} \mathrm{e}^{\mathrm{i} \varphi-\mathrm{i} \theta} \alpha / \beta ; q\right)_{n} . \tag{17}
\end{align*}
$$

When $\beta=\alpha$ the first sum terminates and we obtain (1) once again. The second sum can be reduced to the sum of two ${ }_{4} \varphi_{3}$-series; this expression is too lengthy to present here.

Function $\mathcal{E}_{q}(x, y ; \alpha, \beta)$ on the right-hand side of (11) is an analogue of $\exp (\alpha x+\beta y)$. Indeed, from (16)

$$
\begin{aligned}
\lim _{q \rightarrow 1^{-}} \mathcal{E}_{q}(x, y & (1-q) \alpha / 2,(1-q) \beta / 2) \\
& =\sum_{n=0}^{\infty} \frac{(\beta / 2)^{n}}{n!} \mathrm{e}^{-\mathrm{i} n \varphi}\left(1+\mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \varphi} \alpha / \beta\right)^{n}
\end{aligned}
$$

$$
\begin{align*}
& \times \sum_{k=0}^{n} \frac{(-n)_{k}}{k!} \frac{\left(1+\mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \varphi} \beta / \alpha\right)^{k}\left(-\mathrm{e}^{\mathrm{i} \varphi-\mathrm{i} \theta} \alpha / \beta\right)^{k}}{\left(1+\mathrm{e}^{\mathrm{i} \theta+\mathrm{i} \varphi} \alpha / \beta\right)^{k}} \\
= & \sum_{n=0}^{\infty} \frac{(1 / 2)^{n}}{n!}\left(\alpha \mathrm{e}^{\mathrm{i} \theta}+\beta \mathrm{e}^{-\mathrm{i} \varphi \varphi}\right)^{n}\left(1+\frac{\alpha \mathrm{e}^{-\mathrm{i} \theta}+\beta \mathrm{e}^{\mathrm{i} \varphi}}{\alpha \mathrm{e}^{\mathrm{i} \theta}+\beta \mathrm{e}^{-\mathrm{i} \varphi}}\right)^{n} \\
= & \sum_{n=0}^{\infty} \frac{(\alpha x+\beta y)^{n}}{n!}=\exp (\alpha x+\beta y) \tag{18}
\end{align*}
$$

by the binomial theorem.
Function $u=\mathcal{E}_{q}(x, y ; \alpha, \beta)$ in (11), (12) and (17) is a double-series solution of the difference equation

$$
\begin{equation*}
\frac{\delta}{\delta x} \mathcal{E}_{q}(x, y ; \alpha, \beta)=\frac{2 q^{1 / 4} \alpha}{1-q} \mathcal{E}_{q}(x, y ; \alpha, \beta) \tag{19}
\end{equation*}
$$

which is an analogue of

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} \exp (\alpha x+\beta y)=\alpha \exp (\alpha x+\beta y) \tag{20}
\end{equation*}
$$

on a q-quadratic grid. Operator $\delta / \delta x$ is the standard Askey-Wilson divided difference operator

$$
\begin{equation*}
\frac{\delta u(z)}{\delta x(z)}=\frac{u(z+1 / 2)-u(z-1 / 2)}{x(z+1 / 2)-x(z-1 / 2)} \tag{21}
\end{equation*}
$$

with $x=\left(q^{z}+q^{-z}\right) / 2=\cos \theta, q^{z}=\mathrm{e}^{\mathrm{i} \theta}$. Applying this operator to (19) once again one obtains

$$
\begin{equation*}
\frac{\delta^{2} u}{\delta x^{2}}=\left(\frac{2 q^{1 / 4} \alpha}{1-q}\right)^{2} u \tag{22}
\end{equation*}
$$

The method of solution of this equation discussed in [14] (see also references therein) does not involve the double-series solution found here.

Function $\mathcal{E}_{q}(x, y ; \alpha, \beta)$ satisfies the following simple properties:

$$
\begin{array}{ll}
\mathcal{E}_{q}(x, y ; \alpha, \alpha)=\mathcal{E}_{q}(x, y ; \alpha) & \mathcal{E}_{q}(x, y ; \alpha, \beta)=\mathcal{E}_{q}(y, x ; \beta, \alpha) \\
\mathcal{E}_{q}(x, 0 ; \alpha, \beta)=\mathcal{E}_{q}(x ; \alpha) & \mathcal{E}_{q}(0, y ; \alpha, \beta)=\mathcal{E}_{q}(y ; \beta) \tag{24}
\end{array}
$$

Equation (12) leads also to the product formula

$$
\begin{equation*}
\mathcal{E}_{q}(x, y ; \alpha, \beta) \mathcal{E}_{q}(z, w ; \gamma, \delta)=\mathcal{E}_{q}(x, z ; \alpha, \gamma) \mathcal{E}_{q}(y, w ; \beta, \delta) \tag{25}
\end{equation*}
$$

which is, obviously, a q-analogue of

$$
\exp (\alpha x+\beta y) \exp (\gamma z+\delta w)=\exp (\alpha x+\gamma z) \exp (\beta y+\delta w)
$$

Equation (25) is an extension of the product formula (7.7) of [14] in the case of the q-quadratic lattice under consideration.

Two limiting cases of (16) are of interest. When $\beta \rightarrow 0$, we obtain the generating function for the continuous q-Hermite polynomials

$$
\begin{equation*}
\left(q \alpha^{2} ; q^{2}\right)_{\infty} \mathcal{E}_{q}(x ; \alpha)=\sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} \alpha^{n} H_{n}(x \mid q) \tag{26}
\end{equation*}
$$

discussed in $[2,4,9,11,12]$ and [14]. One needs this generating function in order to derive the connecting formula (13) (see [1]). Another limiting case, $\alpha \rightarrow 0$, results in the following generating relation found in [11]:

$$
\begin{equation*}
\mathcal{E}_{q}(x ; \beta)=\left(\beta^{2} ; q^{2}\right)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} \beta^{n} H_{n}\left(x \mid q^{-1}\right) \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{n}\left(\cos \theta \mid q^{-1}\right)=\sum_{k=0}^{n} q^{k^{2}-k n} \frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} \mathrm{e}^{\mathrm{i}(n-2 k) \theta} \tag{28}
\end{equation*}
$$

One can also introduce basic trigonometric functions

$$
\begin{align*}
& C_{q}(x, y ; \omega, \varkappa)=\frac{1}{2}\left(\mathcal{E}_{q}(x, y ; \mathrm{i} \omega, \mathrm{i} \varkappa)+\mathcal{E}_{q}(x, y ;-\mathrm{i} \omega,-\mathrm{i} \varkappa)\right) \tag{29}\\
& S_{q}(x, y ; \omega, \varkappa)=\frac{1}{2 \mathrm{i}}\left(\mathcal{E}_{q}(x, y ; \mathrm{i} \omega, \mathrm{i} \varkappa)-\mathcal{E}_{q}(x, y ;-\mathrm{i} \omega,-\mathrm{i} \varkappa)\right) \tag{30}
\end{align*}
$$

as analogues of $\cos (\omega x+\varkappa y)$ and $\sin (\omega x+\varkappa y)$, respectively. The following addition formulae hold.

Theorem 3.

$$
\begin{align*}
& C_{q}(x, y ; \omega, x)=C_{q}(x ; \omega) C_{q}(y ; \varkappa)-S_{q}(x ; \omega) S_{q}(y ; \varkappa) \tag{31}\\
& S_{q}(x, y ; \omega, x)=S_{q}(x ; \omega) C_{q}(y ; \varkappa)+C_{q}(x ; \omega) S_{q}(y ; \varkappa) \tag{32}
\end{align*}
$$

These formulae are, obviously, q-analogues of

$$
\begin{align*}
& \cos (\omega x+\varkappa y)=\cos \omega x \cos \varkappa y-\sin \omega x \sin \varkappa y \tag{33}\\
& \sin (\omega x+\varkappa y)=\sin \omega x \cos \varkappa y+\cos \omega x \sin \varkappa y . \tag{34}
\end{align*}
$$

The special case $\varkappa=\omega$ of formulae (31) and (32) was discussed in [14].
Addition formula (11) deserves further investigation. For example, it is worth understanding the similarity of the function $\mathcal{E}_{q}(x, y ; \alpha, \beta)$ introduced here to the generating functions for the continuous q-ultraspherical polynomials and the continuous q-Jacobi polynomials found in [8]. A group-theoretical interpretation of the q-addition theorems is another interesting question under consideration.

The author thanks Joaquin Bustoz for valuable discussion. He was supported by NSF grant DMS 9803443.

References

[1] Bustoz J and Suslov S K 1998 Basic analog of Fourier series on a q-quadratic grid Methods Appl. Anal. 5 1-38
[2] Floreanini R and Vinet L 1995 A model for the continuous q-ultraspherical polynomials J. Math. Phys. 36 3800-13
[3] Floreanini R and Vinet L 1995 More on the q-oscillator algebra and q-orthogonal polynomials J. Phys. A: Math. Gen. $\mathbf{2 8}$ L287-93
[4] Floreanini R, LeTourneux J and Vinet L 1997 Symmetry techniques for the Al-Salam-Chihara polynomials J. Phys. A: Math. Gen. 30 3107-14
[5] Floreanini R, LeTourneux J and Vinet L 1999 Symmetries and continuous q-orthogonal polynomials Algebraic Methods and q-Special Functions (CRM Proceedings and Lecture Notes 22) ed J F van Diejen and L Vinet (Providence, RI: American Mathematical Society) pp 135-44
[6] Gasper G and Rahman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University Press)
[7] Gosper R W Jr and Suslov S K 2000 Numerical investigation of basic Fourier series q-Series from a Contemporary Perspective (Contemporary Mathematics 254) ed M E H Ismail and D R Stanton (Providence, RI: American Mathematical Society) pp 199-227
[8] Ismail M E H, Masson D R and Suslov S K 1997 Some generating functions for q-polynomials Special Functions, q-Series and Related Topics (Fields Institute Communications 14) ed M E H Ismail, D R Masson and M Rahman (Providence, RI: American Mathematical Society) pp 91-108
[9] Ismail M E H, Rahman M and Stanton D 1999 Quadratic q-exponentials and connection coefficient problems Proc. Am. Math. Soc. 127 2931-41
[10] Ismail M E H, Rahman M and Zhang R 1996 Diagonalization of certain integral operators: II J. Comput. Appl. Math. 68 163-96
[11] Ismail M E H and Stanton D 2000 Addition theorems for the q-exponential functions q-Series from a Contemporary Perspective (Contemporary Mathematics 254) ed M E H Ismail and D R Stanton (Providence, RI: American Mathematical Society) pp 235-45
[12] Ismail M E H and Zhang R 1994 Diagonalization of certain integral operators Adv. Math. 108 1-33
[13] Nikiforov A F, Suslov S K and Uvarov V B 1985 Classical Orthogonal Polynomials of a Discrete Variable (Moscow: Nauka) (in Russian) (Engl. Transl. 1991 (Berlin: Springer))
[14] Suslov S K 1997 Addition theorems for some q-exponential and q-trigonometric functions Methods Appl. Anal. 411-32
[15] Suslov S K 2000 Some expansions in basic Fourier series and related topics Constructive Approximation at press

